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Comment on ‘‘Deterministic equations of motion and phase ordering dynamics’’
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Zheng@Phys. Rev. E61, 153 ~2000!# claims that phase ordering dynamics in the microcanonicalf4 model
displays unusual scaling laws. We show here, performing more careful numerical investigations, that Zheng
only observed transient dynamics mostly due to the corrections to scaling introduced by lattice effects, and that
Ising-like ~model A! phase ordering actually takes place at late times. Moreover, we argue that energy conser-
vation manifests itself in different corrections to scaling.
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The problem of the dynamical foundations of statistic
mechanics has received renewed attention recently, whe
the spirit of the famous work of Fermi, Pasta, and Ulam@1#,
researchers directly studied the evolution of isolated, ma
degrees-of-freedom Hamiltonian systems with the aim of
lating their microscopic, deterministic, chaotic motion
their macroscopic statistical properties@2#. In this context,
the two-dimensional latticef4 model is of special interes
because it is known to exhibit, within the canonical e
semble, a second-order phase transition in the Ising uni
sality class. Recent work@3,4# aimed, in particular, at study
ing the corresponding behavior in the isolate
microcanonical case, whose equations of motion can be w
ten

f̈ i5(
j

~f j2f i !1m2f i2
g

6
f i

3

where the sum is over the four nearest neighbors of sitei on
a square lattice.

In the same spirit, Zheng@5# has considered thea priori
simpler problem of the phase-ordering process which ta
place when the microcanonicalf4 lattice is suddenly
‘‘quenched’’ below the critical point. Universality of domai
growth laws is nowadays a fairly well-established topic@6#.
It is well documented, even for less traditional systems s
as deterministic, possibly chaotic, spatially extended
namical systems@7–10#. For a scalar order parameter, tw
main universality classes can be distinguished dependin
whether it is locally conserved or not. The Ising model
prototypical of the nonconserved case, and so should be
lattice f4 model, at least in the usual canonical ensem
point of view. However, and this was the interesting po
raised by Zheng, the presence of the energy conservatio
the microcanonical case might have an influence on the
namical scaling laws associated with phase ordering. In
sense, the question is whether the phase ordering of mod
@11# is in the same universality class as model A.

Using numerical simulations in the so-called ‘‘early-time
regime, Zheng confirmed that the usual dynamical sca
laws seem to hold, but with exponents at odds with th
both the nonconserved order parameter~NCOP! and the con-
served order parameter~COP! class @5#. In particular, he
foundz52.6(1) (1/z is the exponent governing the algebra
growth ofL, the typical size of domains!, between its NCOP
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and COP values (zNCOP52 andzCOP53). Zheng ‘‘explains’’
this surprising result by the influence on scaling of ‘‘the fix
point corresponding to the minimum energy of random init
states’’~present when considering domain growth!.

Here we show that a more careful numerical investigat
actually leads to conclude that the microcanonical latticef4

model shows normal, NCOP phase ordering. We argue
energy conservation, but also lattice effects, have sublea
influences on scaling. We discuss in particular the effec
the increase of the ‘‘bulk temperature’’ due to the progress
disappearance of interfaces during the growth transient.
attribute the erroneous results of Zheng to the danger of
ing ‘‘early-time’’ methods and naive logarithmic plots i
problems with large microscopic times and/or corrections
scaling.

I. NORMAL SCALING AT LATE TIMES

Zheng conducted different numerical experiments wh
led to estimates of exponentsz, l/z ~wherel is the so-called
Fisher-Huse exponent!, and u5(22l)/z. From all direct
measurements ofz he concluded thatz52.6(1). Using this
value, he found an estimate ofl in agreement with the
NCOP value@l51.22(5) whereaslNCOP55/4#. Thus, the
only strong departure from the NCOP values is for expon
z. Therefore, in the following, we focus on growth law ofL
in large systems at late times~as opposed to the early-tim
approach favored by Zheng!.

In order to reach late times satisfactorily, we need a be
control of the conservation of energy than with the simp
second-order scheme used by Zheng. The following res
were obtained with a third-order bilateral symplectic alg
rithm @12# with a time stepdt50.025. The conservation o
initial energy is better than 1025 in relative value in all runs
presented. To investigate phase ordering, we use the s
initial conditions as Zheng (f56q0 where the sign is ran-
dom andq0 calculated to yield the desired energy densitye).
We present results for two sets of parameter values, (m2,g)
5(6,1.8) ~set A, used by Zheng!, and (m2,g)5(2,0.6) ~set
B, used in@3,4#!. The initial energy density (e0527 for set
A, and e0510.0001 for set B!, was chosen very close to it
minimum value allowed by the random-sign initial cond
tions (emin580/3 for set A, andemin510 for set B!. This
ensures that ‘‘thermal’’ fluctuations are minimized, since t
©2002 The American Physical Society01-1
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energy density is then as far as possible from the crit
energy densityec (ec'35 for set A, andec'21 for set B!.

A. Growth of typical domain size

The typical domain sizeL was determined by the mid
height value ofC(r ,t), the normalized two-point correlatio
function calculated for simplicity along the principal axes
the lattice using the continuous fieldf or the reduced ‘‘spin’’
variable s[sgnf: C(k,t)51/2N( i j s i j (s i 1k j1s i j 1k).
~No significant difference was found between the two cas
and only results usings are shown below.! We first checked
that dynamical scaling holds by observing the collapse
C(r ,t)5 f @r /L(t)# curves at different times after some tra
sient ~not shown! @19#.

For both sets of parameters, the expected NCOP lawL
;At, i.e. z52) is reached at late times, but a rather lo
transient is observed, especially for set A@Figs. 1~a! and
1~b!#. The same data plotted in logarithmic scales is th
misleading. If the data for set B reach the ‘‘normal’’ scalin
@see Fig. 1~d! and its inset# at late times, the correspondin
plot for parameter set A@Fig. 1~c!# seems to indicate a valu
of 1/z between1

3 and 1
2 ~typical of the value estimated b

Zheng! if one ignores the systematic trend upward of t
local exponent@see inset of Fig. 1~c!# @20#.

FIG. 1. Growth of typical scaleL(t). All results presented here
were obtained from single runs of lattices of 819238192 sites with
periodic boundary conditions.~a! and~b!: L vs At for parameter set
A and B, the dotted lines are the fits discussed in Sec. II C;~c! and
~d!: the same but in logarithmic scales~dashed lines for ‘‘expected’
behaviorz52). Insets: local slopes calculated by a running aver
of the derivated signal over a window of fixed size in the cor
sponding variable~i.e., At or log10t here!. For ~a! and ~b! window
sizeD(At)50.5; for ~c! and ~d! window sizeD(log10t)50.05.
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B. Decay of autocorrelation function

Following Zheng, we also measured the decay of the
tocorrelation functionA(t,t0)5^s(t)s(t0)&, but, again, for
rather large systems and late times, choosing, in particu
initial reference timest0 larger than the ‘‘microscopic’’ tran-
sient time. In the usual NCOP phase-ordering framework,
expect

A~ t,t0!;FL~ t0!

L~ t ! Gl

;S t0

t D l/z

,

where the Fisher-Huse exponentl55/4. Again, plotting
logA vs logt for parameter set A may yield an ‘‘effective
exponentl/z smaller than its NCOP value~and close to the
value given by Zheng!, but a closer look reveals a systema
increase of the instantaneous exponent@Fig. 2~a! and inset#.
However, plottingA vs L, the expected scaling is observe
@Fig. 2~c!#. Considering now parameter set B, the expec
scaling laws are observed rather easily@Figs. 2~b! and 2~d!#.
This confirms further that for the parameter values chosen
Zheng, the onset of the asymptotic scaling regime is delay

C. Early-time growth of squared magnetization

For the sake of completeness, and in order to probe
validity of the early-time scaling approach taken by Zhen
we also performed numerical simulations to measure
short-time growth of the squared magnetizationM2 @M be-

e
-

FIG. 2. Decay of autocorrelation functionA(t,t0) from single
runs of lattices of 409634096 as in Fig. 1 (t055). ~a! and~b!: A vs
t for parameter sets A and B~logarithmic scales, dashed lines: slop
l/z55/8, insets: local slopes!; ~c! and ~d!: A vs L ~logarithmic
scales! for parameter sets A and B~logarithmic scales, dashed lines
slopel55/4, the quality of the data is not high enough for loc
slopes!.
1-2
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COMMENTS PHYSICAL REVIEW E 65 058101
ing defined as the spatial average of eitherf i(t) or s i(t)
5sgnf i(t)# for samples with zero initial magnetization. I
this case, for NCOP scaling, we expect^M2&;td/z5t. Our
data on logarithmic scales barely reaches the expected
havior att.103 @Figs. 3~a! and 3~b!#. Note that the correc-
tions have a different sign for the two parameter sets.
linear scales, however, our data reveals the expected pro
tionality of ^M2& and t @Figs. 3~c! and 3~d!#.

II. CORRECTIONS TO SCALING: ENERGY
CONSERVATION AND LATTICE EFFECTS

The above results show that domain growth in the mic
canonicalf4 model eventually falls into the NCOP unive
sality class (z52, l55/4) after some possibly long transie
behavior. In this section, we suggest that there are two m
factors at the origin of these corrections to scaling: sp
discretization and energy conservation.

A. Lattice effects

For the sets of parameters studied by Zheng~notably pa-
rameter set A!, domain growth initially appears to be slowe
than the expected NCOP law~the effective value ofz mea-
sured at short times is larger than two!.

This is similar to earlier observations on coupled m
lattices, both for the NCOP and COP cases. First meas
ments of domain growth seemed to indicate slower growth
those discrete-space, discrete-time chaotic models@7,9#, but
it was shown later that this nontrivial scaling is only transie

FIG. 3. Early-time growth of the squared magnetization for
ensemble of 500 symmetric (M50) samples in a lattice of 512
3512 sites.~a! and ~b!: ^M2& vs t ~logarithmic scales! for param-
eter sets A and B; dashed lines: slope 1.~c! and ~d!: ^M2& vs t
~linear scales! for parameter sets A and B.
05810
e-

n
or-

-

in
e

e-
n

t

and that, for late-enough times, normal scaling is recove
@8,10#. It was also argued that these long transients gradu
disappear in the continuous-space limit which is well defin
in these systems@13#.

Here, it is easy to observe that, increasingg ~and m2,
since there is only one free parameter!, the slowing down of
domain growth due to lattice effects diminishes, as sugge
by the difference between parameter sets A and B. For
rameter set B, the transient actually presents faster gro
than asymptotically: corrections to scaling are dominated
another phenomenon, stronger than lattice effects.

B. Energy fluxes

The ~conserved! total energy in the system can be par
tioned into three components, kinetic, potential, and inter
tion energy

Ekin5(
i

1

2
ḟ i

2,

Epot5(
i

2
1

2
m2f i

21
g

4!
f i

4 ,

Eint5(
i

1

2 (
j 51

d

~f i 1 j2f i !
2.

As domain growth proceeds following random initial cond
tions, the interaction energy decreases with time as a la
part of it is contained in the interfaces separating doma
the density of which decreases like 1/At. Potential decrease
and kinetic energy increases~Fig. 4!.

Starting from ‘‘ordered’’ initial conditions@all sites in the
same phase, e.g.,;,if i(0).0#, the three components of th
total energy are almost constant, except for a slight~quasi-
logarithmic in time! increase of interaction energy and d
crease of potential energy due to the nucleation of ‘‘therm
droplets and to relaxation further into potential wells. Th
effect is indeed larger for parameter set A for which t
minimal possible energy densityemin is further away from
the critical energy density, leading to stronger thermal flu
tuations than for parameter set B.

C. Corrections to effective temperature

Kinetic energy can be interpreted as a temperature in
microcanonical context@3#. We can thus see the observe
increase of kinetic energy as an increase of the tempera
of the system. For the~canonical! Ising model, it is well
known @14# that the prefactor of the growth law ofL(t)
decreases to zero as the temperature approaches its c
value. We suggest to see the growth law observed here
the f4 model as including a ‘‘temperature-dependent’’ pre
actor:

L~ t !.K~Ekin!At. ~1!

Quantitatively~Fig. 4!, the kinetic energy seems to reach
asymptotic value like
1-3
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DEkin[Ekin~ t !2Ekin~`!;t21/2. ~2!

Assuming its analyticity, we can write the prefactorK,

K~Ekin!5K`1K18DEkin1K28~DEkin!21•••, ~3!

whereK` is the asymptotic (t→`) prefactor of the domain
growth law. Injecting Eqs.~2! and~3! into Eq.~1!, we finally
expect the following Ansatz to hold for the domain grow
law:

L~ t !5K`At1K11
K2

At
1•••. ~4!

FIG. 4. Corrections to scaling due to energy conservation.
sults for parameter set B, for which these corrections are domi
~see text!. ~a! The three components of the total energy during ph
ordering.~b! Same but from ordered initial conditions.~c! Decay on
the number of interfacial sites~defined as sites with a least on
nearest neighbor of opposite sign!; the number of interfacial sites
measured during the evolution from an initially homogeneous c
figuration has been substracted.~d! Convergence of the tota
kinetic-energy~temperature! towards its asymptotic value: 1/DEkin

vs At during phase ordering.
-

d
.
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Equation ~4! provides excellent fits to our data for th
growth of L(t). We find K`.0.2, K1.2.0, andK2.23.5
for parameter set A~with x257.8 and correlation coefficien
0.999 96! , andK`.2.1, K1.25.6, andK2.5.7 ~with x2

5105 and correlation coefficient 0.9997! for parameter set B.
The corrective terms have opposite signs in both ca

this indicates that Eq.~4! is only relevant for parameter se
B, because, in analogy with the Ising model, only negat
values ofK1 are allowed~the prefactor of the growth law
decreases with increasing temperature!. A first conclusion is
thus that the main corrections to scaling for parameter se
~typical of those used by Zheng! are due to lattice effects an
are not consequences of the conservation of global ene
We note that, similarly, a fit of domain growth in couple
map lattices also yields positive values ofK1, indicating that
this sign is a signature of lattice effects@8#.

On the other hand, the above framework does provide
relevant explanation for the corrections to scaling obser
for parameter set B, which can thus be traced back to
fluxes between the various components of the energy
duced by the decrease of interfaces between domain
phase-ordering proceeds.

III. CONCLUSION

In this Comment, we have shown that Zheng reached
roneous conclusions when studying phase ordering in
microcanonical latticef4 model. This system, like other cha
otic, deterministic, dynamical systems presenting phase
dering, does display the expected domain growth sca
laws, i.e., those of the nonconserved order-parameter
~model A, z52, l55/4). We have shown further that th
main influence of the conservation of energy is to introdu
corrections to scaling, but that the long transients wh
plagued Zheng’s approach are due to lattice effects.

Zheng offered, as an explanation for his nonconventio
results, that the system considered falls into the class
model C, where a conserved density is coupled to the o
parameter @11#. Studies of phase ordering in model
@16,17,15# show that model B-like, but also model A-like
behavior can be observed. In this context, the microcanon
f4 lattice can be considered as a model C system quenc
into its ‘‘bistable region’’~wherez52 is observed@18,15#!.
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